
A Checklist for Writing Linux Real-Time Applications

Embedded Linux Conference Europe
26-29 October 2020

John Ogness <john.ogness@linutronix.de>

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 1



Real-Time Defined

What is Real-Time?

Correctness is not just about writing bug-free, efficient code.
It also means executing at the correct time.
And failing to meet timing restrictions leads to an error.
This requires:

• deterministic runtime/scheduling behavior
• interruptibility
• priority inversion avoidance

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 2



Real-Time Defined

Priority Inversion

Figure: An example of priority inversion.

In this example, task3 is holding a lock that task1 wants. However, task3
never gets a chance to release that lock because it was interrupted by
task2.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 3



Real-Time Defined

Priority Inheritance

Figure: An example showing priority inheritance.

Linux supports priority inheritance to temporarily boost the priority of
task3 once task1 tries to acquire the lock. This results in task1 acquiring
the lock as soon as possible.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 4



Real-Time API

POSIX

Linux real-time features are implemented using the POSIX standard API.
Most developers are already comfortable with this interface.

The real-time API for Linux is essentially contained in the sched.h, time.h,
and pthread.h header files.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 5



Scheduling with Real-Time

Scheduling Policies

Non-Real-Time Policies:
SCHED_OTHER: dynamic time slices based on nice value
SCHED_BATCH: a disfavored SCHED_OTHER
SCHED_IDLE: run only when otherwise idle

Real-Time Policies:
SCHED_FIFO: static priority (1-99), can only lose the CPU to higher
priority tasks or hardware interrupts
SCHED_RR: like SCHED_FIFO but with round robin scheduling for
tasks of the same priority
SCHED_DEADLINE: dynamic priority based on deadlines

Be aware of /proc/sys/kernel/sched_rt_runtime_us, which can
artificially limit real-time tasks. Set to -1 to disable.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 6



Scheduling with Real-Time

When dealing with real-time systems, generally only SCHED_FIFO and
SCHED_RR are of interest. However, these policies should only be used on the
real-time tasks. All other tasks of the systemwill generally use SCHED_OTHER,
with varying nice values and/or cgroups to control their CPU time.

The scheduling policy can be set using the chrt command:

Set policy:
chrt [opts] <policy> <prio> <pid>
chrt [opts] <policy> <prio> <cmd> [<arg> ...]

Scheduling policies:
-f, --fifo set policy to SCHED_FIFO
-o, --other set policy to SCHED_OTHER
-r, --rr set policy to SCHED_RR (default)

… or in code:

#include <sched.h>
struct sched_param param;
param.sched_priority = 80;
sched_setscheduler(0, SCHED_FIFO, &param);

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 7



Limiting/Isolating CPUs

CPU Affinity

Each task has its own CPU affinity mask, specifying which CPUs it
may be scheduled on.
Boot parameters are available to set default masks for all tasks
(including the kernel’s own tasks).
A CPU affinity mask for routing individual hardware interrupt
handling is also available.

Isolating activity on CPUs can increase determinism by controlling how tasks
are interrupted. Just be aware that SMP systems usually have multiple CPUs
sharing caches.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 8



Limiting/Isolating CPUs

The CPU affinity mask for tasks can be set using the taskset command:

taskset [options] mask command [arg]...
taskset [options] -p [mask] pid

… or in code:

#define _GNU_SOURCE
#include <sched.h>

cpu_set_t set;

CPU_ZERO(&set);
CPU_SET(0, &set);
CPU_SET(1, &set);
sched_setaffinity(pid, CPU_SETSIZE, &set);

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 9



Limiting/Isolating CPUs

Kernel parameters related to CPU isolation:
maxcpus=n: limits the kernel to bring up n CPUs
isolcpus=cpulist: specify CPUs to isolate from disturbances

The default CPU affinity for routing hardware interrupts when new
interrupt handlers are registered can be viewed/set in:

/proc/irq/default_smp_affinity

The CPU affinity for routing hardware interrupts for already registered
interrupt handlers can be viewed/set in:

/proc/irq/irq-number/effective_affinity
/proc/irq/irq-number/smp_affinity

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 10



Memory Management

Page Faulting

By default, physical memory pages are mapped to the virtual address
space on demand. This allows features such as over-commitment and it
affects all virtual memory of a process:

text segment
initialized data segment
uninitialized data segment
stack(s)
heap

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 11



Memory Management

Avoid Page Faults

Tune glibc’s malloc to avoid memory mapping as a form of memory
allocation. mmap’d memory cannot be reused after being freed.
Lock down allocated pages so that they cannot be returned to the
kernel. Hold on to what you’ve been given.
Prefault the heap and the stack(s).

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 12



Memory Management

Themalloc function of glibc can be tuned using themallopt function.
Below are the calls to disable memory mapping for memory allocation
and disable heap trimming.

#include <malloc.h>

mallopt(M_MMAP_MAX, 0);
mallopt(M_TRIM_THRESHOLD, -1);

Memory pages can be locked down with themlockall function:

#include <sys/mman.h>

mlockall(MCL_CURRENT | MCL_FUTURE);

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 13



Memory Management

An example of heap prefaulting:

#include <stdlib.h>
#include <unistd.h>

void prefault_heap(int size)
{

char *dummy;
int i;

dummy = malloc(size);
if (!dummy)

return;

for (i = 0; i < size; i += sysconf(_SC_PAGESIZE))
dummy[i] = 1;

free(dummy);
}

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 14



Memory Management

An example of stack prefaulting:

#include <unistd.h>

#define MAX_SAFE_STACK (512 * 1024)

void prefault_stack(void)
{

unsigned char dummy[MAX_SAFE_STACK];
int i;

for (i = 0; i < MAX_SAFE_STACK; i += sysconf(_SC_PAGESIZE))
dummy[i] = 1;

}

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 15



Locking

Synchronization

Use pthread_mutex for locking. These objects have owners (unlike
semaphores) so the kernel can more intelligently choose which
processes to schedule.
Activate priority inheritance. Unfortunately this is not the default.
Activate shared and robustness features if the lock is accessed by
multiple processes in shared memory.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 16



Locking

Here is a trivial example showing the syntax and semantics of lock
initialization and usage.

#include <pthread.h>

pthread_mutex_t lock;
pthread_mutexattr_t mattr;

pthread_mutexattr_init(&mattr);
pthread_mutexattr_setprotocol(&mattr, PTHREAD_PRIO_INHERIT);
pthread_mutex_init(&lock, &mattr);

pthread_mutex_lock(&lock);
/* do critical work */
pthread_mutex_unlock(&lock);

pthread_mutex_destroy(&lock);

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 17



Locking

The feature PTHREAD_PROCESS_SHARED should only be set if the lock
resides in shared memory. Locks marked with this feature have
additional overhead when contended.

Be aware that activating PTHREAD_MUTEX_ROBUST introduces new
semantics for phread_mutex_lock(). Make sure you fully understand its
usage, otherwise youmay have broken synchronization. See the man
page of pthread_mutexattr_setrobust(3) for details.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 18



Signalling

Conditional Variables

Use pthread_cond objects for notifying tasks if shared resources are
involved. These can be associated with pthread_mutex objects to
provide synchronized notification.
Do not use signals (such as POSIX timers or the kill() function). They
involve unclear and limited contexts, do not provide any
synchronization, and are difficult to program correctly.
Activate the shared feature if the conditional variable is accessed by
multiple processes in shared memory.
The sender should notify the receiver before releasing the lock
associated with the conditional variable.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 19



Signalling

Here is an example showing the syntax and semantics of conditional
variable initialization.

#include <pthread.h>

pthread_condattr_t cattr;
pthread_cond_t cond;

pthread_condattr_init(&cattr);
/* pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED); */
pthread_cond_init(&cond, &cattr);

Like with pthread_mutex, the feature PTHREAD_PROCESS_SHARED
should only be set if the conditional variable resides in shared memory.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 20



Signalling

Signalling (code snippet)

#include <pthread.h>

pthread_mutex_t lock;
pthread_cond_t cond;

Code of receiver:

pthread_mutex_lock(&lock);
pthread_cond_wait(&cond, &lock);
/* we have been signaled */
pthread_mutex_unlock(&lock);

Code of sender:

pthread_mutex_lock(&lock);
/* do the work */
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&lock);

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 21



Clocks and Cyclic Tasks

The Monotonic Clock

Use the POSIX functions that allow clock specification. These begin
with clock_.
Choose CLOCK_MONOTONIC. This is a clock that cannot be set and
represents monotonic time since some unspecified starting point.
Do not use CLOCK_REALTIME. This is a clock that represents the
”real” time. For example, Monday 26 October 2020 13:00:00. This
clock can be set by NTP, the user, etc.
Use absolute time values. Calculating relative times is error prone
because the execution itself takes time.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 22



Clocks and Cyclic Tasks

When using CLOCK_MONOTONIC and absolute times, a cyclical task becomes
trivial to implement.
#include <time.h>
#define CYCLE_TIME_NS (100 * 1000 * 1000)
#define NSEC_PER_SEC (1000 * 1000 * 1000)
static void norm_ts(struct timespec *tv)
{

while (tv->tv_nsec >= NSEC_PER_SEC) {
tv->tv_sec++;
tv->tv_nsec -= NSEC_PER_SEC;

}
}
void cyclic_task_main(void)
{

struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
while (1) {

/* do the work */
/* wait for next cycle */
tv.tv_nsec += CYCLE_TIME_NS;
norm_ts(&tv);
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &tv, NULL);

};
}
ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 23



Evaluating Real-Time Systems

How to Evaluate a Real-Time System?

Use the cyclictest tool. (Part of the rt-tests package.)
• measures/tracks latencies from hardware interrupt to userspace
• run at the priority level to evaluate
• example: cyclictest -S -m -p <prio> --secaligned

Generate worst case system loads.
• scheduling load: the hackbench tool
• interrupt load: flood pinging with ”ping -f”
• serial/network load: ”top -d 0” via console and network shells
• memory loads: OOM killer invocations
• various load scenarios: the stress-ng tool
• stress controller/peripheral devices
• idle system

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 24



Performance Counters

perf

perf is a tool that can count various types of hardware and software
events.
Some examples: CPU cycles, page faults, cache misses, context
switches, scheduling events, …
It can help to identify performance issues with real-time tasks by
showing if certain types of latency causing events are occurring.

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 25



Performance Counters

Versions of perfmay depend on certain kernel versions/features. For
this reason it is important that the correct perf version is used. perf is
part of the Linux kernel source, in tools/perf. It is best to use the version
that comes from the same source as the running kernel.

perf has many features and the help is spread across manyman pages.
However, perf can automatically open the correct man pages:

perf --help
perf --help <command>

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 26



Performance Counters

List all supported events:

perf list

Count the number of CPU cycles and page faults on a system over 5
seconds:
perf stat -a -e cpu-cycles -e page-faults sleep 5

Count the combined number of context switches only for the tasks 123
and 124 over 5 seconds:
perf stat -e cpu-cycles -e context-switches \

-p 123,124 sleep 5

View the top symbols causing cache misses on the first CPU (with perf
pinned to the second CPU):

taskset 2 perf top -C 0 -e cache-misses

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 27



Tracing

The Linux Tracing Infrastructure

Log not onlywhat happened but alsowhen it happened.
Provides a rich set of software events (points of code) in the kernel.
Custom kernel events can be added to a live system.
Custom userspace events can be added to a live system. (Userspace
tasks must be started after the events are added, but the programs
do not need to be modified.)
Tools are available to simplify usage, such as trace-cmd and perf.
Graphical tools are available to view and analyze trace data, such as
kernelshark and Trace Compass.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 28



Tracing

The Linux tracing infrastructure has manymore features than presented here.
With it, the possibilities for debugging and analyzing real-time software are
nearly limitless. If you are serious about debugging real-time issues, it is worth
it to look deeper into these Linux features.

Keep in mind that this is not just for debugging. With the tracing infrastructure
developers and testers can verify real-time performance.

Simple Examples:

List all supported events:
trace-cmd list

Record scheduling wakeup and switch events system-wide for 5 seconds:
trace-cmd record -e sched:sched_wakeup -e sched:sched_switch sleep 5

View the recorded events (recorded in trace.dat):
trace-cmd report

Graphically view the recorded events:
kernelshark

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 29



Tracing (kernelshark output)

In this figure we see that mate-terminal had work to do (is in the
RUNNABLE state) but Xorg has the CPU. And CPU0 is idle!

Is this a problem? Why do we have this situation? From the trace we do
not know the answers to these questions. But at least we know it is
happening!

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 30



Tracing (kernelshark output)

From a detailed (zoomed in) view, we canmeasure the latences between
when the task is set RUNNABLE, when it started running on the CPU, and
when it returned to userspace.

In most cases there is no need for expensive hardware solutions. The
kernel comes with all these features built-in!

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 31



Kernel Configuration

Optimal Real-time Configuration

Certain kernel options can make a big difference in real-time
performance:

preemption mode
watchdog/debug features
tickless, dynamic, or periodic ticks
CPU idle features
frequency scaling features

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 32



Kernel Configuration

CONFIG_PREEMPT_*
To activate all real-time capabilities, set to CONFIG_PREEMPT_RT_FULL
(currently only available with the PREEMPT_RT patch, but will be
mainline soon).
CONFIG_LOCKUP_DETECTOR CONFIG_DETECT_HUNG_TASK
These tasks run with priority 99. Unless explicitly used/needed,
disable them.
CONFIG_NO_HZ CONFIG_HZ_*
Eliminating or delaying the kernel tick can reduce power
consumption, but will result in larger latencies.
CONFIG_CPU_FREQ_GOV_* CONFIG_CPU_FREQ_DEFAULT_*
Make sure CPU frequency is enabled, but use the performance
governor for minimal latency.
CONFIG_DEBUG_*
Some debugging features are very expensive. Make sure only those
are enabled that are explicitly wanted.
CONFIG_FTRACE CONFIG_KPROBES CONFIG_UPROBES
Not performance related, but important so that tracing is possible.

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 33



Checklist

Real-Time Checklist

Real-Time Priority
SCHED_FIFO, SCHED_RR

CPU Affinity
applications
interrupt handlers
interrupt routing

Memory Management
avoid mmap() with malloc()
lock memory
prefault memory

Time and Sleeping
use monotonic clock
use absolute time

Kernel Configuration
be aware of options
affecting latency

Avoid Signals
such as POSIX timers
such as kill()

Avoid Priority Inversion
use pthread_mutex
(and set attributes!)
use pthread_cond
(and set attributes!)

Verify Results
trace scheduling
trace page faults
monitor traces

NMIs
knowwhat NMIs exist
and how they can be
triggered/avoided

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 34



Questions?

https://wiki.linuxfoundation.org/realtime/

ELC Europe 2020 A Checklist for Writing Linux Real-Time Applications 35

https://wiki.linuxfoundation.org/realtime/

	Real-Time Applications
	Real-Time Defined
	Real-Time API
	Scheduling with Real-Time
	Limiting/Isolating CPUs
	Memory Management
	Locking
	Signalling
	Clocks and Cyclic Tasks
	Evaluating Real-Time Systems
	Performance Counters
	Tracing
	Tracing (kernelshark output)
	Kernel Configuration
	Checklist
	


